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Abstract

The three-dimensional (3D) chromosomal structure plays an essential role in all DNA-templated processes, including gene transcrip-
tion, DNA replication and other cellular processes. Although developing chromosome conformation capture (3C) methods, such as
Hi-C, which can generate chromosomal contact data characterized genome-wide chromosomal structural properties, understanding
3D genomic nature-based on Hi-C data remains lacking. Here, we propose a persistent spectral simplicial complex (PerSpectSC) model
to describe Hi-C data for the first time. Specifically, a filtration process is introduced to generate a series of nested simplicial complexes
at different scales. For each of these simplicial complexes, its spectral information can be calculated from the corresponding Hodge
Laplacian matrix. PerSpectSC model describes the persistence and variation of the spectral information of the nested simplicial
complexes during the filtration process. Different from all previous models, our PerSpectSC-based features provide a quantitative
global-scale characterization of chromosome structures and topology. Our descriptors can successfully classify cell types and
also cellular differentiation stages for all the 24 types of chromosomes simultaneously. In particular, persistent minimum best
characterizes cell types and Dim (1) persistent multiplicity best characterizes cellular differentiation. These results demonstrate the
great potential of our PerSpectSC-based models in polymeric data analysis.
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Introduction
The genome’s three-dimensional (3D) architecture
within the cell nucleus is thought to play a crucial role
in many biological processes, including gene regulation,
cell replication and cell differentiation [1–11]. Recently,
various studies have shown that changes in chromo-
somal structure at specific genomic regions and under
certain conditions are associated with cell development
and differentiation [12–15]. Thus, a comprehensive
understanding of the chromosomal 3D structure is
of fundamental significance to the decryption and
interpretation of genetic information and has become
one of the most important topics in genomics and
epigenetic research.

Chromosome conformation capture (3C) [1, 18] and
its derived techniques, including chromosome confor-
mation capture-on-chip (4C) [19], chromosome con-
formation capture carbon copy (5C) [20] and high-
throughput chromosome conformation capture (Hi-
C) [2], have become widely used to generate genome-
wide chromatin interaction maps [21]. The element
in chromosome contact matrices is the frequency of
contacts between pairs of chromosome loci within a
population of cells. The matrices are usually visualized as
a square heatmap, then analyzed to identify chromatin
structures [22]. As increasing numbers of contact
matrices are published in different cell types and various
stages of differentiation, the Hi-C technique provides
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crucial information necessary for distinguishing the 3D
shape of chromosomes or genomes.

To understand the polymer mechanisms underlying
the complex spatial organization of chromosomes, var-
ious polymer models and computational methods have
been developed [2, 4, 12, 23–34]. Xu et al. [23] developed an
accurate and fast method, called FastHiC, to detect long-
range chromatin interactions based on a novel imple-
mentation of the simulated field approximation from Hi-
C data. More importantly, Sauerwald et al. [25] adapted
the Gaussian Network Model (GNM) [35] to model chro-
matin dynamics using Hi-C data, which accesses the
structural basis of genome-wide observations. Further-
more, Zhang et al. [27] followed GNM to reveal differ-
ences in the intrinsic spatial dynamics of the chromatin
across different cell lines. More specifically, in order to
study the variation in chromosomal structures between
different cell types, Zhou et al. [26] described a single-cell
clustering algorithm, called scHiCluster, for Hi-C contact
matrices which is based on imputations using linear con-
volution and random walk. Recently, Sauerwald et al. [36]
applied Topological Data Analysis (TDA) to study chro-
mosomal structure through differentiation across three
cell lines and identify persistent connected components
and one-dimensional circles or loops topological features
of chromosomes.

Here, we develop persistent spectral simplicial complex-
based machine learning (PerSpectSC-ML) for chromoso-
mal structural classification in cellular differentiation.
We model the chromosomal structures and interactions
as simplicial complexes. By using a filtration process,
a series of simplicial complexes at various scales are
systematically generated for a chromosomal structure.
Based on them, we develop PerSpectSC-based chromo-
somal descriptors from the statistical and combina-
torial properties of PerSpectSC. These descriptors are
combined with t-SNE-assisted k-means for the classi-
fication of cell types. Our PerSpectSC-ML models have
achieved great accuracy on 14 cell types representing
various cell lines. Meanwhile, many of the patterns
representing various stages of differentiation can be
observed by chromosomal descriptors from PerSpectSC
models.

Results
Persistent spectral simplicial complex
Different from the traditional graph- and network-based
models, chromosomal structures and interactions are
considered as simplicial complexes [37] in our Per-
SpectSC models. Mathematically, a simplicial complex,
which is composed of simplices, can be viewed as a
generalization of the graph into its higher-dimensional
counterparts. A graph is composed of vertices (0-
simplices) and edges (1-simplices), whereas a simplicial
complex is made from 0-simplices, 1-simplices, 2-
simplices (triangles), 3-simplices (tetrahedrons) and
other higher-dimensional simplices (See MATERIALS

AND METHODS for details). Physically, a graph charac-
terizes pair-wise interactions through edges, whereas a
simplicial complex can describe many-body interactions
using simplices.

One of the core elements for our PerSpectSC model
is the Hodge-Laplacian-based spectral model. Chromo-
some structures can be modeled as different topological
representations, including graphs, simplicial complexes
and hypergraphs. Based on them, Hodge Laplacian matri-
ces at different dimensions can be constructed. Here, we
consider the simplicial complex representation. The k-
dimensional Hodge Laplacian matrix (k is a non-negative
integer), denoted as Lk, describes topological connections
between k-simplices. From these matrices, the spectral
information, i.e. eigenvalues and eigenvectors, can be
calculated and further used for the characterization of
the structural properties.

The other core element for our PerSpectSC model is
the filtration process. During a filtration process, a series
of multiscale topological representations are generated
[38]. At a lower filtration value, points (bins) are not
‘connected’, i.e. separated from each other, indicating a
higher resolution focusing on local details. At a higher
filtration value, points (bins) are ‘overlapped’ with each
other and ‘connect’ into a topological structure, indicat-
ing a lower resolution that captures global information.
With the increase (or decrease) of filtration value, there
is a continuous change of scales, thus a multiscale rep-
resentation can be achieved.

PerSpectSC models focus on persistence and varia-
tions of spectral information during a filtration process.
Persistent attributes, which are defined as the statistic
and combinatorial properties of the eigenvalues dur-
ing the filtration process, are used as quantitative fea-
tures for structural characterization. The PerSpectSC-
based features can be combined with both unsupervised
and supervised models for the data analysis.

PerSpectSC-based Hi-C data characterization
Here, we develop PerSpectSC-based descriptors for chro-
mosome structural classification for the first time. The
essential idea is to model chromosome structures as
simplicial complexes and use persistent attributes to
characterize their intrinsic structure properties.

Hodge Laplacian matrix can be generated from the
simplical complexes. We denote Lk as kth dimensional
Hodge Laplacian matrix. For Dim(0), at the very start of
the filtration, there are only 30 vertices (0-simplex), and
a 30*30 all-zero L0 matrix is generated according to Eq.
(4) (see MATERIALS AND METHODS). As the increase
of filtration value, the size of L0 matrices remains
unchanged, while more and more entries with −1 value
appear at its off-diagonal part. When the filtration value
is large enough, a complete graph is obtained, and a
full L0 matrix, i.e. all diagonal entries are 29 and all off-
diagonal entries are −1, is generated according to Eqs. (4,
5). For Dim(1), at the early stage of filtration, there exists
no edges (1-simplices) thus no L1 matrix. With edges
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Fig. 1. An illustration of filtration process and PerSpectSC models for 30 bins range from 47.3 to 50.2 Mb of chromosome 22 of RUES2 CM. (A) Normalized
Hi-C matrix is converted to distance matrix. Normalized Hi-C matrix is computed from the reads through the HiC-Pro pipeline [16], and sample is
tested for quality at 100 kb resolution. N is genomic bins. Distance matrix is computed through Eq. (8). (B) Distance matrix is converted to point cloud by
classical multidimensional scaling (CMDS) [17], and the nested sequence of simplicial complexes is constructed. From distance matrix, Hodge Laplacian
matrices (L0 and L1) as in Eq. (4) can be systematically obtained at each filtration value. (C) Six persistent attributes obtained from the PerSpectSC models.
Note that persistent multiplicity is equivalent to persistent Betti numbers. (D) Results of t-SNE and t-SNE-assisted k-means based on Dim (1) persistent
multiplicity of chromosome Y.

emerging as the filtration value increases, L1 matrices
are generated. Different from Dim(0) case, the size of
L1 matrices increases with the number of edges. Off-
diagonal entries can be 1 and −1 depending on the edge
orientation as in Eq. (4, 6). When the filtration value is
large enough, all edges will be either upper adjacent or
not lower adjacent (The definitions of ’upper’ and ’lower
adjacent’ see Eq. (6)); thus, L1 matrix becomes a diagonal
matrix with all its diagonal entries as 30. Mathematically,
higher-dimensional Hodge Laplacian matrices can also
be generated.

Persistent attributes can be obtained from the filtra-
tion process. Figure 1C shows the persistent multiplic-
ity, persistent maximum, persistent minimum, persis-
tent mean, persistent SD and persistent Laplacian graph
energy for 47.3 to 50.2 Mb of chromosome 22 of RUES2
CM. It can be seen that these persistent attributes change
with the filtration value. Each variation of persistent
attributes indicates a certain change of the simplicial
complexes. Note that the persistent multiplicity is equiv-
alent to the persistent Betti number or Betti curve. In
this way, the persistent homology (PH) [37] information
is naturally embedded into persistent multiplicity. At fil-
tration size 1.00, a complete two-dimensional simplicial
complex is achieved, i.e. any 3 vertices can form a 2-
simplex. The corresponding L0 has eigenvalues 0 and
30. The size for the corresponding L1 is 435*435, and its
eigenvalues are all 30. Note that 435 = C2

30.

PerSpectSC-ML for classification of different cell
types
To validate the efficiency of our PerSpectSC-based fea-
tures, we develop PerSpectSC-based machine learning
models and use them for chromosome structural clus-
tering. A general machine learning approach, i.e. ‘dimen-
sionality reduction + k-means’, is considered. Figure 1
illustrates the general procedure of this ML model.

The classification of different cell types is a key
step in an important regulator of gene expression
[12, 39]. An accurate classification requires a better

characterization of geometric structures of Hi-C data.
Here, Figure 2 compares the performance of our PerSpect
SC-ML for each persistent attribute per chromosome
for 14 cell types classification. From the perspective of
chromosomes, it can be seen that the PerSpectSC-ML
performance of chromosome Y can achieve state-of-the-
art results. More importantly, from the perspective of
persistent attributes, it can be seen that PerSpectSC-ML
performance of persistent minimum can achieve state-
of-the-art results, which is better than the results of
topological information (Dim (0) and Dim (1) persistent
multiplicity) [36]. It is worth mentioning that the
performance of persistent maximum is slightly better
than that of Dim (1) persistent multiplicity. Meanwhile,
the performances of persistent generalized mean graph
energy, persistent Laplacian graph energy, persistent
mean, persistent moment (second-order) and persistent
standard deviation are comparable to that of Dim (1)
persistent multiplicity.

Additionally, Figure 3 visualizes the results of PerSpect
SC-ML models of Dim (0) persistent multiplicity, Dim (1)
persistent multiplicity and persistent minimum for chro-
mosomes 13, 21 and Y, respectively. From the perspective
of chromosome 13, there are 7 cells (WTC11 CM, RUES2
MES, WTC11 MES, H1 NP, RUES2 FetalHeart, H1 ME and
H1 ESC) that are misclassified by Dim (0) persistent mul-
tiplicity. Similarly, there are also 7 cells that are misclas-
sified by Dim (0) persistent multiplicity based on PCA-
assisted k-means (see Figure S1A, see Supplementary
Data available online at http://bib.oxfordjournals.org/).
There are 5 cells (H1 NP, RUES2 CP, RUES2 ME, RUES2
ESC and RUES2 CM) that are misclassified by Dim (1)
persistent multiplicity. There are only 2 cells (WTC11 CP
and RUES2 ESC) which are misclassified by persistent
minimum. From the perspective of chromosome 21, there
are 4 cells (RUES2 CM, RUES2 MES, WTC11 MES and
WTC11 CM) that are misclassified by Dim (0) persistent
multiplicity. There are 6 cells (RUES2 FetalHeart, WTC11
PSC, WTC11 CP, H1 ESC, RUES2 CM and H1 NP) which are
misclassified by Dim (1) persistent multiplicity, whereas
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Fig. 2. Performance comparison of PerSpectSC-ML’s results for each persistent attribute per chromosome for 14 cell types classification. The above
histogram represents the average value over 12 persistent attributes. The right histogram represents the average value over 24 chromosomes.

persistent minimum of chromosome 21 can completely
separate three different cell types. These results further
demonstrate the performance of persistent minimum is
better than the results of topological information (Dim
(0) and Dim (1) persistent multiplicity). Furthermore, Dim
(0) persistent multiplicity, Dim (1) persistent multiplicity
and persistent minimum of the chromosome Y can also
completely separate three different cell types. Based on
PCA-assisted k-means, the persistent minimum of the
chromosome Y can also completely separate three dif-
ferent cell types (see Figure S1B, see Supplementary Data
available online at http://bib.oxfordjournals.org/). Mean-
while, we also compare t-SNE-assisted k-means’s perfor-
mance based on persistent minimum of chromosome Y
when the perplexity hyperparameters of t-SNE are 2, 3,
4 and 5, respectively (see Figure S2, see Supplementary
Data available online at http://bib.oxfordjournals.org/).
These four t-SNE-assisted k-means’s results also sepa-
rate three cell types fully. Similarly, this result further
confirms that the PerSpectSC-ML performance of chro-
mosome Y can achieve state-of-the-art results. Other
than chromosomal structures, the PerSpectSC-ML model
can be used in the analysis of molecular structure from
proteins, DNAs and RNAs [40]. It is suitable for structure
representation.

PerSpectSC-ML for classification of H1 cells
different stages
In order to further distinguish different stages of H1
cells, normalized areas of persistent attributes were
compared for all chromosomes (see Figure 4 and

Figure S3, see Supplementary Data available online
at http://bib.oxfordjournals.org/) through Eq. (9). The
normalized area of Dim (0) persistent multiplicity can
not distinguish the 5 stages of H1 (see Figure 4A).
Excluding ESC and ME stages, the normalized area of
persistent generalized mean graph energy can well
distinguish TB, NP and MS stages of H1 (see Figure 4B).
More interestingly, Dim (1) persistent multiplicity is
consistent with the result of persistent generalized
mean graph energy (see Figure 4C). This may be due
to the large difference in the number of loops per
chromosome [41]. Excluding persistent minimum and
persistent number of nonzero-eigenvalue, normalized
areas of other persistent attributes distinguish stages of
H1 to some extent (see Figure S3, see Supplementary
Data available online at http://bib.oxfordjournals.org/).
These results further demonstrate that Dim (1) persistent
multiplicity obtained from the PerSpectSC model at
the genome-wide scale can characterize differentiation
stages. There are huge differences in the number of loops
of chromosomes in different differentiation stages. Thus,
compared with the bottleneck distance which quantifies
the difference between two persistence diagrams [36],
the normalized area of persistent attributes in our
PerSpectSC models can identify the general global
topological changes during different stages of H1 cells
for the entire 24 chromosomes.

Discussion
The present comparative study of the intrinsic prop-
erties of chromosomes in a series of cell lines using
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Fig. 3. Performance comparison of PerSpectSC-ML’s results obtained on 3 persistent attributes of 3 chromosomes. (A-C) represent the results of Dim (0)
persistent multiplicity for chromosome 13, chromosome 21 and chromosome Y, respectively. (D-F) represent the results of Dim (1) persistent multiplicity
for chromosome 13, chromosome 21 and chromosome Y, respectively. (G-I) represent the results of persistent minimum for chromosome 13, chromosome
21 and chromosome Y, respectively. Misclassified cells are circled.

corresponding Hi-C data in the PerSpectSC shed light
on several persistent attributes, including the topological
information. A combinational t-SNE-assisted k-means
for adapting PerSpectSC is constructed and the state-of-
the-art results are obtained. By analyzing the results of
PerSpectSC-ML of 14 samples from various cell lines and
stages of differentiation, we identify generative princi-
ples of chromosomal structure. Based on the PerSpectSC-
ML model, our descriptors have the best classification
power for cell lines on chromosome Y. Over the 12 per-
sistent attributes, the persistent minimum has the best
overall performance on all the 24 types of chromosomes.
Dim (1) persistent multiplicity, rather than Dim (0) per-
sistent multiplicity, can characterize cell lines and stages
of differentiation. PerSpectSC model shows promise for
further analysis of Hi-C data, especially as computational
limitations are overcome, permitting analysis of higher
dimensional features at higher resolution.

For a more in-depth discussion, the proposed Per-
SpectSC model provides a highly efficient and effective
way for chromosomal representation. Compared with
traditional featurization, the PerSpectSC model has

several advantages. First, the PerSpectSC model can not
only calculate the topological invariants (Betti number)
of chromosomes but also obtain other spectral informa-
tion. Second, the PerSpectSC model captures the spectral
information from various different scales through an
expansion process. Thus, spectral information has
multiscale properties. Third, the PerSpectSC model
considers the physics of higher-order interactions within
chromosome systems, such as simplicial complexes.
Last, the PerSpectSC model is convenient to combine
with machine learning for structural data analysis.

Materials and Methods
Dataset
The Hi-C datasets used in this study are obtained from
the Kingsford Group [36]. The detailed Hi-C data infor-
mation can be found in Table 1, including accession
codes. Cell samples from all 14 conditions included two
replicates each. All of the samples were processed from
raw reads to normalized contact matrices at 100 kb using
the HiC-Pro pipeline [16] and iterative correction and
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Fig. 4. Performance comparison of normalized areas obtained from Dim (0) persistent multiplicity (A), persistent generalized mean graph energy (B) and
Dim (1) persistent multiplicity (C) of 24 chromosomes for H1 ESC, H1 ME, H1 MS, H1 NP and H1 TB.

eigenvector decomposition (ICE) normalization [42]. To
maximize coverage, all of the reads from replicates were
combined to produce one Hi-C matrix per sample.

Simplicial complex
Simplicial complexes have been applied to map the
real organization of various material, biological and

chemical systems [43]. The simplicial complex is com-
posed of simplices. Each simplex is a finite set of
vertices and can be viewed geometrically as, a point
(0-simplex), an edge (1-simplex), a triangle (2-simplex),
a tetrahedron (3-simplex) and their k-dimensional
counterpart (k-simplex). More specifically, a k-simplex
σ k = {v0, v1, v2, · · · , vk} is the convex hull formed by k + 1
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Table 1. All Hi-C datas used for this study

Cell type Description SRA Accessions

H1 ESC embryonic stem cell SRX378271,
SRX378272

H1 ME mesendoderm SRX378273,
SRX378274

H1 MS mesenchymal stem cell SRX378275,
SRX378276

H1 NP neural progenitor SRX378277,
SRX378278

H1 TB trophoblast-like cells SRX378279,
SRX378280

RUES2 CM cardiac myocyte SRX3375353,
SRX3375354

RUES2 CP cardiac progenitor SRX3375351,
SRX3375352

RUES2 ESC embryonic stem cell SRX3375347,
SRX3375348

RUES2 FetalHeart fetal heart tissue SRX3375355,
SRX3375356

RUES2 MES mesoderm SRX3375349,
SRX3375350

WTC11 CM cardiac myocyte SRX4958487,
SRX4958488

WTC11 CP cardiac progenitor SRX4958485,
SRX4958486

WTC11 MES mesoderm SRX4958483,
SRX4958484

WTC11 PSC pluripotent stem cell SRX4958481,
SRX4958482

affinely independent points v0, v1, v2, · · · , vk as follows:

σ k =
{

λ0v0 + λ1v1 + · · · + λkvk |
k∑

i=0

λi = 1; ∀i, 0 ≤ λi ≤ 1

}
.

(1)

The ith dimensional face of σ k (i < k) is the convex
hull formed by i + 1 vertices from the set of k + 1 points
v0, v1, v2, · · · , vk. The simplices are the basic components
for a simplicial complex.

A simplicial complex K is a finite set of simplices
that satisfy two conditions. Firstly, any face of a simplex
from K is also in K. Secondly, the intersection of any two
simplices in K is either empty or a shared face. A kth
chain group Ck is the free Abelian group generated by
oriented k-simplices, which are simplices together with
an orientation, i.e. one of the two classes of permutations
of the vertex set of a simplex. The boundary operator
∂k (Ck → Ck−1) for an oriented k-simplex σ k is defined
by

∂kσ
k =

k∑
i=0

(−1)i[v0, v1, v2, · · · , v̂i, · · · , vk]. (2)

Here, [v0, v1, v2, · · · , v̂i, · · · , vk] is an oriented (k − 1)-
simplex, generated by the original set of vertices except
vi. The boundary operator maps a simplex to its faces

and it guarantees that ∂k−1∂k = 0. The commonly used
methods to define simplicial complexes are Vietoris-
Rips (VR) complex, Čech Complex, Alpha complex,
Clique complex, Cubic complex and Morse complex
[37]. Among them, the VR complex is used in this
study.

Spectral simplicial complex
The spectral simplicial complex theory characterizes the
spectral properties of Hodge (or combinatorial) Laplacian
matrices, which are constructed based on a simplicial
complex [44, 45]. Computationally, for oriented simplicial
complex, its kth boundary (or incidence) matrix Bk is
defined as follows:

Bk(i, j) =

⎧⎪⎨
⎪⎩

1, if σ k−1
i ⊂ σ k

j ∼ and ∼ σ k−1
i ∼ σ k

j

−1, if σ k−1
i ⊂ σ k

j ∼ and ∼ σ k−1
i �∼ σ k

j

0, if σ k−1
i �⊂ σ k

j .
(3)

Here, σ k−1
i ⊂ σ k

j indicates that σ k−1
i is a face of σ k

j and

σ k−1
i �⊂ σ k

j indicates the opposite. The notation σ k−1
i ∼ σ k

j

indicates that the given orientation of σ k−1
i is the same

that it has in the boundary of σ k
j , and σ k−1

i �∼ σ k
j indicates

the opposite. With the relation of boundary operator
∂k∂k+1 = 0, these boundary matrices satisfy the condition
that BkBk+1 = 0.

The kth Hodge Laplacian matrix can be expressed as
follows:

Lk =
⎧⎨
⎩

B1BT
1 if k = 0

BT
kBk + Bk+1BT

k+1 if 0 < k < n
BT

nBn if k = n.
(4)

Note that n represents the highest order of the sim-
plicial complex K. More specifically, the above Hodge
Laplacian matrices can be explicitly described in terms
of the simplex relations. L0 can be expressed as

L0(i, j) =

⎧⎪⎨
⎪⎩

d(σ 0
i ), if i = j

−1, if i �= j ∼ and σ 0
i �σ 0

j

0, if i �= j ∼ and σ 0
i �� σ 0

j .
(5)

From Eq. (5), L0 is exactly the graph Laplacian matrix.
Furthermore, when k > 0, Lk can be expressed as

Lk(i, j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d(σ k
i ) + k + 1, ifi = j

1, if i �= j, σ k
i �� σ k

j , σ k
i � σ k

j ∼ and σ k
i ∼ σ k

j

−1, if i �= j, σ k
i �� σ k

j , σ k
i � σ k

j ∼ and σ k
i �∼ σ k

j

0, if i �= j, σ k
i �σ k

j ∼ or ∼ σ k
i �� σ k

j .

(6)

Here, d(σ k
i ) is the (upper) degree of a k-simplex σ k

i , i.e.
the number of (k + 1)-simplices, of which σ k

i is a face.
σ k

i �σ k
j means that the two simplices are upper adjacent,

i.e. they are faces of a common (k + 1)-simplex, and
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σ k
i � � σ k

j means the opposite. Notation σ k
i � σ k

j means
that the two simplices are lower adjacent, i.e. they share a
common (k−1)-simplex as their face, σ k

i �� σ k
j means the

opposite. Notation σ k
i ∼ σ k

j means that the two simplices
have the same orientation, i.e. oriented similarly, and
σ k

i �∼ σ k
j means the opposite. The eigenvalues of Hodge

Laplacian matrices are independent of the choice of the
orientation [44]. All the eigenvalues are non-negative.
More importantly, the multiplicity of zero-eigenvalues,
i.e. the total number of zero-eigenvalues, of Lk equals to
the kth Betti number βk. Geometrically, β0 represents
the number of connected components of the VR
complex, β1 represents the number of one-dimensional
circles or loops, and β2 represents the number of two-
dimensional voids or cavities. All the positive eigenval-
ues characterize detailed structure properties. As an
example, we consider an oriented simplicial complex
K1 as in Figure S4 (see Supplementary Data available
online at http://bib.oxfordjournals.org/) and explain it
accordingly.

Persistent spectral simplicial complex
PerSpectSC models characterize the intrinsic topological
and geometric information of data. PerSpectSC models
do not consider the eigenspectrum information of the
simplicial complex, constructed from data at a fixed
scale; instead, they focus on the variation of the eigen-
spectrum of these topological representations during a
filtration process.

Physically, a filtration process generates a multiscale
representation of complex systems [46]. For instance, a
filtration operation on a distance matrix, i.e. a matrix
with distances between any two vertices as its entries,
can be defined by using a cutoff value as the filtra-
tion parameter. More specifically, for simplicial com-
plex, if the distance between two vertices is smaller
than the cutoff value, an edge (1-simplex) is formed
between them. Furthermore, a triangle (2-simplex), a
tetrahedron (3-simplex) and their k-dimensional coun-
terpart (k-simplex) are formed. In this way, a systematical
increase (or decrease) of the cutoff value will deliver a
series of nested simplicial complexes, with the simplicial
complex generated at a lower cutoff value as a subset (or
a part) of the simplicial complex generated at a larger
cutoff value. Nested simplicial complexes can be con-
structed by using various definitions of complexes, such
as VR complex, Čech Complex, Alpha complex, Clique
complex, Cubic complex and Morse complex.

Mathematically, a filtration process can naturally
induce a nested series of simplicial complexes at
different scales as follows:

K0 ⊆ K1 ⊆ · · · ⊆ Km. (7)

Here, the ith simplicial complex Ki is generated at
filtration value fi. Computationally, we can equally
divide the filtration region (of the filtration parameter)

into m intervals and consider a topological repre-
sentation at each interval. Hodge Laplacian matrix
series {Li

k|i=1,2,...,m;k=0,1,2,...} can be constructed from these
simplicial complexes

{
Ki

}
. Note that the size of these

Laplacian matrices may be different.

Applying PerSpectSC to single-cell Hi-C data
PerSpectSC models use a distance matrix that describes
the distances between all point cloud data. Although
Hi-C data is interpreted as describing the 3D distances
between chromosomal segments, the value of a Hi-C
matrix is contact counts rather than distance values,
where a high contact count implies a low distance. A
normalized Hi-C matrix C is converted to a distance
matrix D as follows:

D(i, j) = 1 −
{

1, if i = j
1
m log(C(i, j) + 1), if i �= j.

(8)

Here, m = 1.01maxi,j≤N(log(C(i, j)) + 1), and N is the
number of rows in the contact matrix C. A pseudo-count
of 1 is added to all off-diagonal values in the Hi-C matrix
to avoid taking a logarithm of zero, and the factor of
1.01 is included to ensure that all distances where i �= j
are non-zero. GUDHI [47], a Python library for TDA, is
used to construct simplicial complex series

{
Ki

}
at dif-

ferent filtration value fi based on these transformational
distance matrices D at 100 kb resolution. Based on the
simplicial complex series

{
Ki

}
, PerSpectSC models can be

constructed.

Persistent attributes
In order to reveal the principles of chromosomal struc-
ture in cellular differentiation, we propose a set of persis-
tent attributes using statistical and combinatorial prop-
erties of PerSpectSC models. These persistent attributes
are of the same sizes and can be used as chromosomal
descriptors. More specifically, we consider 12 chromoso-
mal descriptors as follows:

• persistent generalized mean graph energy
( p∑

i=1

∣∣λi − λ̄
∣∣)

• persistent Laplacian graph energy
( p∑

i=1
λi

)
• persistent maximum (max

{
λ1, λ2, · · · , λp

}
)

• persistent mean
(

1
p

p∑
i=1

λi

)
• persistent minimum (min

{
λ1, λ2, · · · , λp

}
)

• persistent moment (second-order)
( p∑

i=1
λ2

i

)
• Dim (0) persistent multiplicity (of zero-eigenvalue)
• Dim (1) persistent multiplicity (of zero-eigenvalue)
• persistent number of non-zero-eigenvalue

• persistent quasi-Wiener index
( p∑

i=1

p+1
λi

)

• persistent spanning tree number
(

log
(

1
p+1 ·

p∏
i=1

λi

))
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• persistent standard deviation
(√

1
p−1

p∑
i=1

(λi − λ)
2
)

.

Here, λi > 0 and p is the total number of all non-zero
eigenvalues. In particular, persistent multiplicity is the
multiplicity of zero eigenvalues and is equivalent to the
persistent Betti number or Betti curve. Note that other
than the persistent multiplicity, all persistent attributes
are calculated from Dim (0) Laplacians.

In our PerSpectSC models, the distance value is con-
sidered as the filtration parameter. In filtration parame-
ter discretization process, Hodge Laplacian matrices are
generated for each chromosome of each cell. Computa-
tionally, the filtration parameter goes from 0.00 to 0.99
with a step of 0.01. A total of 12 chromosomal descrip-
tors, as stated above, are considered. An example can
be found in Figure 1 (30 bins range from 47.3 to 50.2
Mb of chromosome 22 of RUES2 CM). For each contact
matrix, a total of 100 Laplacian matrices are generated.
The normalized area of the kth persistent attribute f k is
defined as follows:

Area(f k) = �x

N

N∑
i=1

f k(xi). (9)

Computationally, the filtration region is equally divided
into N intervals with grid spacing �x. More specifically,
we use filtration region [0, 1], N = 100 and �x = 0.01.

PerSpectSC-ML for classification of cell types
In our PerSpectSC-based machine learning (PerSpectSC-
ML) models, the t-distributed stochastic neighbor embed-
ding (t-SNE) [48] is used for chromosomal descriptors
dimensionality reduction. In fact, ‘dimensionality reduc-
tion +k-means’ models are very general approaches for
data clustering [49]. Here, we consider t-SNE model. More
specifically, we use one of the 12 chromosomal descrip-
tors of each chromosome of each cell as the input (14 [cell
types]×100 [filtration values]) of t-SNE. Its hyperparame-
ter settings can be found in Table S1 (see Supplementary
Data available online at http://bib.oxfordjournals.org/).
Note that, for each pair of data points, their Euclidean
distance in the original high-dimensional space will be
different from the Euclidean distance in the reduced 2D
space (after t-SNE). However, the reduced 2D space is still
a metric space. Then, we apply the k-means clustering
to the classification dataset (14 [cell types]×2) by setting
the number of clusters equal to the number of the real
label (here, the number of clusters is 3). In the end, in
each cluster, we take the data with the dominant label as
the test for all samples and then calculate the k-means
clustering accuracy for the whole-cell types.

We denote the training set as
{
(Xi, Yi) | Xi ∈ R

m, Yi ∈
Ck

}n
i=1 with Ck = {c1, c2, ..., ck}. Here, n, m and k represent

the number of samples, the number of features {Xi}
and the number of labels {Yi}, respectively. We set the
number of clusters equals to the number of labels k.
After applying the k-means clustering, we get k different

clusters
{
cj

}k
j=1. In each cluster, we define the predictor of

the k-means clustering in the cluster cj to be

Ŷ
(
cj

) = max{Fj(Ŷ1), · · · , Fj(Yk)}. (10)

Here, {Ŷi} are predicted labels and Fj(Ŷ1), · · · , Fj(Yk) are
the appearance frequencies of each label in the cluster cj.
Then, the clustering accuracy can be defined as follows:

Accuracy = 1
n

∑
i
χ(Yi, Ŷi). (11)

Note that the function χ(Yi, Ŷi) = 1 only when Yi = Ŷi,
otherwise it is always zero. It is used to count the number
of correctly predicted data points.

Key Points

Our main contributions in this paper are as follows:

• Persistent spectral simplicial complex (PerSpectSC)-
based chromosomal structural descriptors are devel-
oped.

• PerSpectSC-based chromosomal descriptors can suc-
cessfully classify cell types and also cellular differenti-
ation stages for all the 24 types of chromosomes simul-
taneously.

• Our PerSpectSC model provides a powerful chromosomal
representation that can be widely used in polymeric data
analysis.

Code and data availability
The PerSpectSC-ML models can be found in https://
github.com/Weikang-Gong/PerSpectSC-ML. Additional
data or code would be available upon reasonable request.

Supplementary Data
Supplementary data are available online at http://bib.
oxfordjournals.org/.
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